Страница 2 из 3 Этот фундаментальный результат может также рассматриваться как демонстрация того, что имеются некоторые функции от целых чисел, которые не могут быть представлены с помощью какого-либо алгоритма, т.е. они не могут быть вычислены. Это побудило Алана Тьюринга (1912-1954) попытаться точно охарактеризовать, какие функции способны быть вычисленными. Этот подход фактически немного проблематичен, поскольку в действительности понятию вычисления, или эффективной процедуры вычисления, не может быть дано формальное определение. Но общепризнано, что вполне удовлетворительное определение дано в тезисе Чёрча—Тьюринга, который указывает, что машина Тьюринга [1518] способна вычислить любую вычислимую функцию. Кроме того, Тьюринг показал, что существуют некоторые функции, которые не могут быть вычислены машиной Тьюринга. Например, вообще говоря, ни одна машина не способна определить, возвратит ли данная конкретная программа ответ на конкретные входные данные или будет работать до бесконечности. Хотя для понимания возможностей вычисления очень важны понятия недоказуемости и невычислимости, гораздо большее влияние на развитие искусственного интеллекта оказало понятие неразрешимости. Грубо говоря, задача называется неразрешимой, если время, требуемое для решения отдельных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров. Различие между полиномиальным и экспоненциальным ростом сложности было впервые подчеркнуто в середине 1960-х годов в работах Кобхэма [272] и Эдмондса [430]. Важность этого открытия состоит в следующем: экспоненциальный рост означает, что даже экземпляры задачи умеренной величины не могут быть решены за какое-либо приемлемое время. Поэтому, например, приходится заниматься разделением общей задачи выработки интеллектуального поведения на разрешимые подзадачи, а не пытаться решать неразрешимую задачу.
|