Страница 35 из 82 681. Horswill I. (2000) Functional programming of behavior-based systems. Autonomous Robots, 9, p. 83-93. 682. Horvitz E. J. (1987) Problem-solving design: Reasoning about computational value, trade-offs, andresources. In Proceedings of the Second Annual NASA Research Forum, p. 26—43, Moffett Field, California. NASA Ames Research Center. 683. Horvitz E. J. (1989) Rational metareasoning and compilation for optimizing decisions under boundedresources. In Proceedings of Computational Intelligence 89, Milan. Association for Computing Machinery. 684. Horvitz E. J. and Barry M. (1995) Display of information for time-critical decision making. InUncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference, p. 296—305, Montreal, Canada. Morgan Kaufmann. 685. Horvitz E. J., Breese J. S., Heckerman D., and Hovel D. (1998) The Lumiere project: Bayesian usermodeling for inferring the goals and needs of software users. In Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference, p. 256-265, Madison, Wisconsin. Morgan Kaufmann. 686. Horvitz E. J., Breese J. S., and Henrion M. (1988) Decision theory in expert systems and artificialintelligence. International Journal of Approximate Reasoning, 2, p. 247—302. 687. Horvitz E. J. and Breese J. S. (1996) Ideal partition of resources for metareasoning. In Proceedings ofthe Thirteenth National Conference on Artificial Intelligence (AAAI-96), p. 1229-1234, Portland, Oregon. AAA! Press. 688. Horvitz E. J. and Heckerman D. (1986) The inconsistent use of measures of certainty in artificialintelligence research. In Kanal L. N. and Lemmer J. F. (Eds.), Uncertainty in Artificial Intelligence, p. 137-151. Elsevier/North-Holland, Amsterdam, London, New York. 689. Horvitz E. J., Heckerman D., and Langlotz С. Р. (1986) A framework for comparing alternativeformalisms for plausible reasoning. In Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86), Vol. 1, p. 210-214, Philadelphia. Morgan Kaufmann. 690. Hovy E. (1988) Generating Natural Language under Pragmatic Constraints. Lawrence Erlbaum,Potomac, Maryland. 691. Howard R. A. (1960) Dynamic Programming and Markov Processes. MIT Press, Cambridge,Massachusetts. 692. Howard R. A. (1966) Information value theory. IEEE Transactions on Systems Science and Cybernetics,SSC-2, p. 22-26. 693. Howard R. A (1977) Risk preference. In Howard R. A. and Matheson J. E. (Eds.), Readings in DecisionAnalysis, p. 429-465. Decision Analysis Group, SRI International, Menlo Park, California. 694. Howard R. A. (1989) Microrisks for medical decision analysis. International Journal of TechnologyAssessment in Health Care, 5, p. 357-370. 695. Howard R. A. and Matheson J. E. (1984) Influence diagrams. In Howard R. A and Matheson J. E.(Eds.) Readings on the Principles and Applications of Decision Analysis, p. 721—762. Strategic Decisions Group, Menlo Park, California. 696. Hsu F.-H. (1999) IBM's Deep Blue chess grandmaster chips. IEEE Micro, 19(2), p. 70-80. 697. Hsu F.-H., Anantharaman T. S., Campbell M. S., and Nowatzyk A. (1990) A grandmaster chessmachine. Scientific American, 263(4), p. 44—50. 698. Huang Т., Koller D., Malik J., Ogasawara G., Rao В., Russell S. J., and Weber J. (1994) Automaticsymbolic traffic scene analysis using belief networks. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), p. 966-972, Seattle. AAAI Press. 699. Huang X. D., Acero A., and Hon H. (2001) Spoken Language Processing. Prentice Hall, Upper SaddleRiver, New Jersey. 700. Hubel D. H. (1988) Eye, Brain, and Vision. W. H. Freeman, New York.
|