Страница 2 из 3 Рассматриваемые два случая являются полностью симметричными: ход игры будет одинаковым, за исключением того, что при розыгрыше второй взятки игрок МАХ выбросит карту 6. Игра снова окончится ничьей при двух взятках у каждого игрока, и ход картой 9 является оптимальным. До сих пор все шло хорошо. А теперь скроем одну из карт игрока MIN и допустим, что игрок МАХ знает, что у игрока MIN на руках либо первая раздача (с картой 4), либо вторая раздача (с картой 4), но он не знает, какая именно из них. Игрок МАХ рассуждает следующим образом. Ход картой . 9 является оптимальным решением в игре против первой и второй раздачи на руках игрока MIN, поэтому теперь этот ход должен быть оптимальным, поскольку известно, что на руках у игрока MIN имеется один из этих двух вариантов раздачи. На более обобщенном уровне можно сказать, что игрок МАХ использует подход, который может быть назван "усреднением по прогнозам". Идея его состоит в том, чтобы при наличии карт на руках у противника, которые не видны игроку, оценивать каждый возможный вариант действий, вначале вычисляя минимаксное значение этого действия применительно к каждой возможной раздаче карт, а затем вычисляя ожидаемое значение по всем раздачам с использованием вероятности каждой раздачи. Если читатель посчитает такой подход разумным (или если он не может судить о нем, поскольку не знаком с бриджем), то ему следует поразмыслить над приведенным ниже рассказом. Первый день. Дорога А ведет к куче золотых слитков; дорога в ведет к развилке. Если вы от развилки пойдете налево, то найдете гору драгоценностей, а если пойдете направо, то попадете под автобус. Второй день. Дорога А ведет к куче золотых слитков; дорога В ведет к развилке. Если вы от развилки пойдете направо, то найдете гору драгоценностей, а если пойдете налево, то попадете под автобус. Третий день. Дорога А ведет к куче золотых слитков; дорога в ведет к развилке. Если вы от развилки выберете правильное направление, то найдете гору драгоценностей, а если неправильное, то попадете под автобус.
|