Главная arrow книги arrow Копия Глава 13. Неопределенность arrow Использование правила Байеса: комбинирование свидетельств
Использование правила Байеса: комбинирование свидетельств

Обратите внимание на то, что это утверждение немного строже по сравнению с уравнением 13.13, в котором сформулировано утверждение о независимости только для конкретных значений Toothache и Catch. А при использовании свойства абсолютной независимости, сформулированного в уравнении 13.8, могут также применяться следующие эквивалентные формы:

В разделе 13.5 показано, что утверждения с описанием свойств абсолютной независимости позволяют выполнять декомпозицию полного совместного распределения на гораздо более мелкие распределения. Как оказалось, аналогичную декомпозицию позволяют выполнять утверждения об условной независимости. Например, с помощью утверждения, приведенного в уравнении 13.14, декомпозицию можно вывести следующим образом:

Таким образом, первоначальная крупная таблица декомпонована на три меньшие таблицы. В исходной таблице было семь независимых чисел (, поскольку эти числа должны в сумме составлять 1). Меньшие таблицы содержат пять независимых чиселдля каждого распределения условных вероятностей идля распределения априорной вероятности Cavi ty). Такое достижение на первый взгляд может показаться не очень значительным, но дело в том, что для η симптомов, являющихся условно независимыми, если дана вероятность Cavity, размер представления растет как 0{п), а не. Таким образом, z утверждения об условной независимости могут обеспечивать масштабирование вероятностных систем; более того, такие утверждения могут быть подкреплены данными намного проще по сравнению с утверждениями об абсолютной независимости. С концептуальной точки зрения переменная Cavity разделяет переменные Toothache и Catch, поскольку наличие дупла является прямой причиной и зубной боли, и наложения инструмента на зуб. Разработка методов декомпозиции крупных вероятностных областей определения на слабо связанные подмножества с помощью свойства условной независимости стало одним из наиболее важных достижений в новейшей истории искусственного интеллекта.

Приведенный выше пример из области стоматологии может служить проявлением часто встречающейся ситуации, в которой одна причина непосредственно влияет на целый ряд результатов, причем все эти результаты являются условно независимыми, если дана эта причина. Полное совместное распределение может быть записано следующим образом:

Указанное распределение вероятностей называется наивной байесовской моделью. Такая модель называется "наивной", поскольку часто используется (как упрощающее допущение) в тех случаях, когда переменные "результата" не являются условно независимыми, если дана переменная причины. (Наивную байесовскую модель иногда называют байесовским классификатором, а это не совсем корректное применение термина побудило настоящих специалистов в области байесовских моделей называть ее не наивной, а идиотской байесовской моделью.) На практике наивные байесовские системы могут действовать удивительно успешно, даже если предположение о независимости не является истинным. В главе 20 описаны методы изучения наивных байесовских распределений поданным наблюдений.