Нейронные сети были созданы в результате наблюдения за естественными процессами, происходящими в нервной системе живых существ, и попыток воспроизведения этих процессов. Термин нейрон, обозначающий основной исполнительный элемент искусственных нейронных сетей, был непосредственно заимствован из теории природных нервных систем. Аналогично, генетические алгоритмы возникли в результате наблюдения и попыток копирования естественных процессов, происходящих в мире живых организмов, в частности, эволюции и связанной с ней селекции (естественного отбора) внутри популяций живых существ. Конечно, при подобном сопоставлении нейронных сетей и генетических алгоритмов следует обращать внимание на принципиально различную длительность протекания упоминаемых естественных процессов, т.е. на чрезвычайно быструю обработку информации в нервной системе и очень медленный процесс естественной эволюции. Однако при компьютерном моделировании эти различия оказываются несущественными. Идею генетических алгоритмов высказал Дж. Холланд в конце шестидесятых - начале семидесятых годов XX века. Он заинтересовался свойствами процессов естественной эволюции (в том числе фактом, что эволюционируют хромосомы, а не сами живые существа). Холланд был уверен в возможности составить и реализовать в виде компьютерной программы алгоритм, который будет решать сложные задачи так, как это делает природа - путем эволюции . Поэтому он начал трудиться над алгоритмами, оперировавшими последовательностями двоичных цифр (единиц и нулей), получившими название хромосом . Эти алгоритмы имитировали эволюционные процессы в поколениях таких хромосом. В них были реализованы механизмы селекциии репродукции, аналогичные применяемым при естественной эволюции. Так же, как и в природе, генетические алгоритмы осуществляли поиск «хороших» хромосом без использования какой-либо информации о характере решаемой задачи. Требовалась только некая оценка каждой хромосомы, отражающая ее приспособленность . Механизм селекциизаключается в выборе хромосом с наивысшей оценкой (т.е. наиболее приспособленных), которые репродуцируют чаще, чем особи с более низкой оценкой (хуже приспособленные). Репродукцияозначает создание новых хромосом в результате рекомбинации генов родительских хромосом. Рекомбинация - это процесс, в результате которого возникают новые комбинации генов. Для этого используются две операции: скрещивание, позволяющее создать две совершенно новые хромосомы потомков путем комбинирования генетического материала пары родителей, а также мутация, которая может вызывать изменения в отдельных хромосомах. В генетических алгоритмах применяется ряд терминов, заимствованных из генетики, прежде всего геныи хромосомы, а также популяция, особь, аллель, генотип, фенотип . Генетические алгоритмы применяются при разработке программного обеспечения, в системах искусственного интеллекта, оптимизации, искусственных нейронных сетях и в других отраслях знаний. Следует отметить, что с их помощью решаются задачи, для которых ранее использовались только нейронные сети. В этом случае генетические алгоритмы выступают просто в роли независимого от нейронных сетей альтернативного метода, предназначенного для решения той же самой задачи. Примером может служить задача коммивояжера, изначально решавшаяся при помощи сети Хопфилда. Генетические алгоритмы часто используются совместно с нейронными сетями. Они могут поддерживать нейронные сети или наоборот, либо оба метода взаимодействуют в рамках гибридной системы, предназначенной для решения конкретной задачи. Генетические алгоритмы также применяются совместно с нечеткими системами.
|