Страница 1 из 3 Функция оценки возвращает прогноз ожидаемой полезности игры из данной конкретной позиции по аналогии с тем, как эвристические функции, описанные в главе 4, возвращают прогнозируемое значение расстояния до цели. Идея такого "оценщика" в то время, когда Шеннон предложил ею воспользоваться, была не нова. В течение многих столетий шахматисты (и поклонники других игр) разработали способы выработки суждений о стоимости позиции, поскольку люди еще более ограничены в объемах поиска, который может быть ими выполнен, чем компьютерные программы. Должно быть очевидно, что производительность любой программы ведения игры зависит от качества применяемой функции оценки. Неточная функция оценки приведет агента к позициям, которые окажутся проигрышными. Поэтому возникает важный вопрос — как именно следует проектировать хорошие функции оценки? Во-первых, функция оценки должна упорядочивать терминальные состояния таким же образом, как и настоящая функция полезности; в противном случае использующий ее агент может выбрать неоптимальные ходы, даже обладая способностью просчитывать все ходы до конца игры. Во-вторых, вычисления не должны занимать слишком много времени! (В функции оценки можно было бы вызывать Minimax-Decision в качестве процедуры и вычислять точную стоимость данной позиции, но это поставило бы под сомнение то, к чему мы стремимся, — экономию времени.) В-третьих, для нетерминальных состояний значения этой функции оценки должны строго коррелировать с фактическими шансами на выигрыш. Выражение "шансы на выигрыш" на первый взгляд может показаться странным. В конце концов, шахматы — это же не игра с элементами случайности: в ней безусловно известно текущее состояние и для определения следующего хода не нужно бросать жребий. Но если поиск должен прекращаться в нетерминальных состояниях, то в данном алгоритме будет обязательно оставаться неопределенность в отношении окончательных исходов для этих состояний. Неопределенность такого рода вызвана вычислительными, а не информационными ограничениями. Из-за ограниченного объема вычислений, которые разрешено выполнить в функции оценки для данного конкретного состояния, лучшее, что она может сделать, — это принять какое-то предположение в отношении конечного результата.
<< В начало < Предыдущая 1 2 3 Следующая > В конец >> |