Страница 2 из 2 Агентам могут также потребоваться способы, позволяющие управлять своими собственными процессами формирования рассуждений. Они должны быть способными прекратить размышления, когда потребуются действия, а также должны умело использовать время, отведенное на рассуждения, чтобы выполнить наиболее продуктивные вычисления. Например, агент-водитель такси, который обнаружил впереди картину дорожного происшествия, должен решить за долю секунды, следует ли ему затормозить или объехать то место, где случилось происшествие. Кроме того, данный агент должен также потратить лишь долю секунды на размышление о наиболее важных в этой ситуации вопросах, например, нет ли движения на полосах слева и справа и нет ли непосредственно сзади него большого грузовика, но не задумываться над тем, что резкий маневр увеличит износ и стирание шин автомобиля или что ему давно нужно было найти очередного пассажира. Исследование таких проблем осуществляется главным образом в рамках направления искусственного интеллекта реального времени. По мере того как системы искусственного интеллекта проникают во все более сложные проблемные области, все решаемые задачи становятся задачами реального времени, поскольку агенту никогда больше не отводится достаточно времени для точного решения задачи принятия решений. Очевидно, что становится насущной потребность в методах, которые позволяют действовать в более общих ситуациях принятия решений. В последние годы появились два перспективных метода. В первом из них предусматривается использование алгоритмов с отсечением по времени [357], [682]. Алгоритмом с отсечением по времени называется алгоритм, качество выходных данных которого неизменно улучшается во времени, поэтому он всегда готов предоставить приемлемое решение, когда бы ни была прервана его работа. Такие алгоритмы действуют под управлением ме-тауровневой процедуры принятия решений, которая оценивает, стоит ли выполнять дальнейшие вычисления. Простым примером алгоритма с отсечением по времени является поиск с итеративным углублением в задачах ведения игр. Могут также быть созданы более сложные системы, состоящие из многих таких алгоритмов, действующих вместе [1647]. Вторым методом являются метарассуждения на основе теории решений [683], [687], [1332]. В этом методе применяется теория ценности информации (см. главу 16) для выбора вычислений. Ценность вычислений зависит и от их стоимости (с точки зрения того, что действие не проводится, пока они осуществляются) и от их преимуществ (измеряемых с учетом того, насколько повысилось качество решения). Методы формирования метарассуждений могут использоваться для проектирования лучших алгоритмов поиска и для обеспечения гарантий того, что алгоритмы будут обладать вневременным свойством. Безусловно, подход на основе метарассуждений является дорогостоящим, а методы компиляции могут применяться таким образом, чтобы издержки были малы по сравнению со стоимостями контролируемых вычислений. Тем не менее метарассуждения представляют собой лишь один из аспектов общей рефлексивной архитектуры, т.е. архитектуры, позволяющей формировать рассуждения о вычислительных сущностях и действиях, возникающих в самой архитектуре. Теоретическую основу для рефлексивных архитектур можно заложить, определив совместное пространство состояний, складывающееся из состояний среды и вычислительного состояния самого агента. Могут быть спроектированы алгоритмы принятия решений и обучения, которые применяются к этому совместному пространству состояний и поэтому способствуют реализации и совершенствованию вычислительной деятельности агента. Мы надеемся, что в конечном итоге такие алгоритмы, предназначенные для решения узко конкретных задач, как альфа-бета поиск и обратный логический вывод, исчезнут из систем искусственного интеллекта и будут заменены общими методами, которые направляют вычисления агента в сторону эффективного формирования высококачественных решений.
<< В начало < Предыдущая 1 2 Следующая > В конец >> |